Чем объясняется эффект холла

Чем объясняется эффект холла

Эффект Холла относится к группе гальваномагнитных явлений и заключается в том, что под действием магнитного поля, перпендикулярного к электрическому току, электроны в материале отклоняются перпендикулярно как направлению электрического тока, так и магнитного поля. С помощью эффекта Холла стало возможным понять суть процессов проводимости в полупроводниках и провести грань между полупроводниками и другими типами плохо проводящих материалов. Это обусловлено тем, что измерение ЭДС (разности потенциалов) Холла, возникающей в материале перпендикулярно направлению электрического тока и внешнего магнитного поля, дает возможность непосредственно определить концентрацию и знак носителей заряда. Последнее позволяет определить принадлежность материала к тому или иному типу полупроводников (p или n–типа). Измерения эффекта Холла дают возможность отделить случай ионной проводимости от случая электронной проводимости. Наличие эффекта Холла в проводниках и полупроводниках свидетельствует об электронном характере проводимости. С помощью эффекта Холла возможно получить данные и о подвижности носителей заряда (так называемая «холловская» подвижность). Таким образом, можно считать, что эффект Холла – один из наиболее эффективных методов исследования электрических свойств полупроводниковых материалов.

Этот эффект был открыт Е.Холлом в 1879 г.. Сущность явления заключается в следующем. Если металлическую или полупроводниковую пластину, по которой проходит ток, поместить в магнитное поле, направленное перпендикулярно линиям тока (рис.5), то в ней возникает разность потенциалов в направлении перпендикулярном току и магнитному полю.

В основе эффекта лежит взаимодействие между электрическими зарядами и магнитными полями. Любая заряженная частица, движущаяся в магнитном поле, испытывает действие силы Лоренца, направление которой перпендикулярно направлению движения частицы и направлению магнитного поля. Величина этой силы прямо пропорциональна величине заряда q, скорости частицыv и индукции магнитного поля:

(0.1)

Для металлов и для полупроводников n-типа q = -|e|, где |e|— модуль заряда электрона.

Модуль векторного произведения:

(0.2)

Рис. 5. Схема возникновения эффекта Холла в полупроводнике n-типа.

словимся, что магнитное поле направлено строго перпендикулярно вектору скорости частиц. Т. е. угол α между векторами и равен 90 0 , а sin(90 0 )=1 Тогда:

(1)

Под действием силы Лоренца электроны отклоняются к ближней боковой грани пластины рис. 5 и заряжают ее отрицательно. На противоположной грани остается нескомпенсированный положительный заряд ионов кристаллической решетки. В результате этого в пластине возникает поперечное электрическое поле , направленное от дальней боковой грани к ближней. Обозначим напряженность образовавшегося электрического поля через . Сила , действующая со стороны электрического поля на заряд, направлена в сторону, противоположную направлению силы Лоренца (рис. 5). Возникшая вследствие этого поперечная разность потенциалов Ux называется ЭДС Холла.

Разделение зарядов в образце продолжается до тех пор, пока силы магнитного и электрического полей не уравновесят друг друга, т. е.:

(2)

(3)

Считаем поле , образовавшееся в пластинке однородным. Тогда находим:

(4)

где d – толщина пластинки в направлении поля Ex (рис. 5).

С учетом выражения (3) получаем, что:

(5)

Сила тока, протекающего через единицу поверхности образца, т. е. плотность тока, равна:

(5.1)

А модуль выражения (5.1) найдем как:

(5.2)

где n – число носителей тока в единице объема образца (концентрация носителей тока).

С другой стороны, модуль вектора плотности тока определяется как, где S – площадь поперечного сечения пластины, перпендикулярная направлению. Тогда:

(5.3)

где а— ширина пластины в направлении векторарис. 5.

Сопоставляя формулы (5.2) и (5.3), находим:

(5.4)

Выражая из (5.4) скорость электронов v, находим:

(6)

Подставив (6) в (5), получим:

(7)

Обозначим гдеRх — постоянная или коэффициент Холла. (Условно считают, что знак постоянной Холла совпадает со знаком заряда носителей тока. У электронных полупроводников постояннаяRотрицательна, у дырочных— положительна, гдеp– концентрация дырок).

Тогда выражение (7) записывается в виде:

Читайте также:  Электробритва volle vlb 7000

(8)

Таким образом, ЭДС Холла зависит от величины проходящего тока, индукции магнитного поля, ширины пластины и концентрации носителей заряда. Зависимость от концентрации говорит о том, что в металлах ЭДС Холла по сравнению с полупроводниками намного меньше, и поэтому использование эффекта Холла началось только с применением полупроводников.

При выводе формулы для U мы полагали, что все носители заряда имеют одинаковую скорость. Если учитывать распределение носителей заряда по скоростям, то необходимо ввести числовой множительA,отличный от единицы:

где А– постоянная, зависящая от механизма рассеяния носителей заряда:А=1,93 … 0,99. Практически для большинства металлов можно считать A≈1.

При рассеянии электронов на тепловых колебаниях решетки:

,(8.1)

Наглядная иллюстрация эффекта Холла в полупроводниках c n-типом и p-типом проводимости приведена на рис. 6 a), б). По сравнению с рисунком 5 здесь пластина повернута на угол к наблюдателю вокруг оси.

Рис. 6. Эффект Холла в полупроводниках с n-проводимостью а) и p-проводимостью б)

Объяснение эффекта Холла с помощью электронной теории

Общие сведения.

Эффектом Холла называется появление в провод­нике с током плотностью j, помещён­ном в магнитное поле Н, электрического поля Ех, перпендикулярного Н и j. При этом на­пряжённость электрического поля, называемого ещё полем Холла, равна:

Ex = RHj sin a, (1)

где a угол между векторами Н и J (a 22 См-3), R

10-3(см3/кулон), у полупроводников кон­центрация носителей значительно меньше и R

105 (см3/кулон). Коэффициент Холла R мо­жет быть выражен через подвижность носителей заряда m = еt/m* и удельную электропроводность s = j/E = еnvлр/Е:

Здесь m*— эффективная масса носи­телей, t — среднее время между двумя последовательными соударениями с рассеивающи­ми центрами.

Иногда при описании Холла эффекта вводят угол Холла j между током j и направлением суммарного поля Е: tgj= Ex/E=Wt, где W — циклотронная частота носи­телей заряда. В слабых полях (Wt

Объяснение эффекта Холла с помощью электронной теории.

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j1-j2 (смотри рис 2.1). Она называется Холловской разностью потенциалов (в предыдущем пункте – ЭДС Холла) и определяется выражением:

Здесь b — ширина пластинки, j — плотность тока, B — магнитная индукция поля, R — коэффициент пропорциональности, получивший название постоянной Холла. Эффект Холла очень просто объясняется электронной теорией, отсутствие магнитного поля ток в пластинке обусловливается электрическим полем Ео (смотри рис 2.2). Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору Ео скоростей. Две из них изображены на рисунке сплошными прямыми линиями. Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока — электроны — имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока j.

При включении магнитного поля каждый носитель оказывается под действием магнитной силы F, направленной вдоль стороны b пластинки и равной по модулю

В результате у электронов появляется составляющая скорости, направленная к верхней (на рисунке) грани пластинки. У этой грани образуется избыток отрицательных, соответственно у нижней грани — избыток положительных зарядов. Следовательно, возникает дополнительное поперечное электрическое поле ЕB. Тогда напряженность этого поля достигает такого значения, что его действие на заряды будет уравновешивать силу (2.2), установится стационарное распределение зарядов в поперечном направлении. Соответствующее значение EB определяется условием: eEB=euB. Отсюда:

Поле ЕB складывается с полем Ео в результирующее поле E. Эквипотенциальные поверхности перпендикулярны к вектору напряженности поля. Следовательно, они повернутся и займут положение, изображенное на рис. 2.2 пунктиром. Точки 1 и 2, которые прежде лежали на одной и той же эквипотенциальной поверхности, теперь имеют разные потенциалы. Чтобы найти напряжение воз­никающее между этими точками, нужно умножить расстояние между ними b на напряженность ЕB:

Читайте также:  Турманиевая керамика вред или польза

Выразим u через j, n и e в соответствии с формулой j=neu. В результате получим:

Последнее выражение совпадает с (2.1), если положить

Из (2.4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носи­телей в единице объема).

Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электри­ческого поля, равной единице. Если в поле напряженности Е носи­тели приобретают скорость u то подвижность их u0 равна:

Подвижность можно связать с проводимостью s и концентрацией носителей n. Для этого разделим соотношение j=neu на напряжённость поля Е. Приняв во внимание, что отношение j к Е дает s, а отношение u к Е — подвижность, получим:

Измерив постоянную Холла R и проводимость s, можно по формулам (2.4) и (2.6) найти концентрацию и подвижность носи­ли тока в соответствующем образце.

Принцип эффекта Холла — одна из самых популярных теорий измерения магнитного поля. В этом посте будет обсуждаться эффект Холла: принцип его работы, объяснение теории, формула, применение, включая расчеты для напряжения Холла, коэффициента Холла, концентрации носителей заряда, подвижности Холла и плотности магнитного поля.

Принцип эффекта Холла объясняет поведение носителей заряда при воздействии электрического и магнитного полей. Этот принцип можно рассматривать как расширение силы Лоренца, которая является силой, действующей на носители заряда (электроны и отверстия), проходящие через магнитное поле.

Датчики, работающие по этому принципу, называются датчиками Холла. Эти датчики пользуются большим спросом и имеют очень широкое применение, например, датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и так далее.

История эффекта Холла

Принцип эффекта Холла был назван в честь американского физика Эдвина Холла (1855–1938). Впервые он был представлен миру в 1879 году.

В 1879 году он обнаружил, что когда проводник / полупроводник с током расположен перпендикулярно магнитному полю, генерируется напряжение, которое можно измерить под прямым углом к пути тока. До этого времени электрический ток в проводе считался чем-то похожим на текущую жидкость в трубе.

Принцип эффекта Холла предполагает, что магнитная сила в токе приводит к скученности на конце трубы или провода. Электромагнитный принцип теперь объясняет явления, лежащие в основе эффекта Холла, гораздо лучше. Теория этого ученого, безусловно, намного опередила свое время. Лишь два десятилетия спустя, с введением полупроводников, работы по исследованию эффекта Холла были эффективно использованы.

Первоначально этот принцип использовался для классификации химических образцов. Позднее датчики Холла (с использованием полупроводниковых соединений арсенида индия) стали источником для измерения постоянного или статического магнитного поля без поддержания датчика в движении. Через десятилетие, в 1960-х годах, появились кремниевые полупроводники. Это было время, когда элементы Холла были объединены со встроенными усилителями, и таким образом выключатель Холла был представлен миру.

Принцип работы эффекта Холла

Принцип эффекта Холла гласит, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение может быть измерено под прямым углом к пути тока.

Эффект получения измеримого напряжения, как сказано выше, называется эффектом Холла.

Теория за принципом эффекта Холла

Прежде всего мы должны понять, что такое электрический ток. Электрический ток — это в основном поток заряженных частиц через проводящий путь. Эти заряженные частицы могут быть «отрицательно заряженными электронами» или даже «положительно заряженными отверстиями» (пустоты, в которых должны находиться электроны). Теперь давайте перейдем к теме.

Если мы возьмем тонкую проводящую пластину (как показано выше на рис. 1 и повторено ниже для простоты считывания) и подключим ее к цепи с батареей (источником напряжения), то ток начнет течь по ней. Носители заряда будут течь по прямой линии от одного конца пластины к другому.

Читайте также:  Температура нагрева галогенной лампы

Поскольку носители заряда находятся в движении, они будут создавать магнитное поле. Теперь, когда вы поместите магнит рядом с пластиной, его магнитное поле будет искажать магнитное поле носителей заряда. Это расстроит прямой поток носителей заряда. Сила, которая нарушает направление потока носителей заряда, называется силой Лоренца.

Из-за искажения в магнитном поле носителей заряда отрицательные заряженные электроны будут отклоняться на одну сторону пластины, а положительные заряженные дыры — на другую сторону. Вот почему разность потенциалов (также называемая напряжением Холла) будет генерироваться между обеими сторонами пластины, что можно измерить с помощью измерителя.

Этот эффект известен как эффект Холла. Чем сильнее магнитное поле, тем больше электронов будет отклоняться. Это означает, что чем выше ток, тем больше электронов будет отклоняться. И чем больше будут отклоняться электроны, тем больше будет разность потенциалов между обеими сторонами пластины. Поэтому мы можем сказать, что:

Напряжение Холла прямо пропорционально электрическому току, и прямо пропорционально приложенному магнитному полю.

Формула эффекта Холла

Вот некоторые математические выражения, которые широко используются в вычислениях эффекта Холла:

Напряжение Холла

Напряжение Холла представлено V H. Формула для напряжения Холла:

I — Ток, протекающий через датчик

B — напряженность магнитного поля

q — заряд

n — количество носителей заряда на единицу объема

d — толщина датчика

Коэффициент Холла

Он представлен RH. Формула для коэффициента Холла: RH равно 1 / (qn). Коэффициент Холла (R H) положителен, если число отверстий положительного заряда больше, чем число электронов отрицательного заряда. Аналогично, коэффициент Холла (RH) отрицателен, если число отрицательных зарядовых электронов больше, чем число отверстий положительного заряда.

Концентрация несущей заряда

Концентрация электронов в носителе заряда обозначена как «n», а «дырки» — как «p». Математическое выражение для концентрации носителей заряда:

Холловская мобильности

Холловская мобильность для электронов представлена как «μ n», а для отверстий — как «μ p». Математическое выражение для мобильности Холла:

μ n — проводимость за счет электронов

μ p — проводимость благодаря отверстиям

Плотность магнитного потока

Плотность магнитного потока обозначена буквой «B». Формула для плотности магнитного потока:

Применение принципа эффекта Холла

Принцип эффекта Холла используется в следующих случаях:

  • Оборудование для измерения магнитного поля.
  • Множитель приложений для обеспечения фактического умножения.
  • Тестер эффекта Холла для измерения постоянного тока.
  • Измерение фазового угла. Например, при измерении углового положения коленчатого вала, чтобы точно выровнять угол зажигания свечей зажигания
  • Датчики линейных или угловых перемещений. Например, чтобы определить положение автомобильных сидений и ремней безопасности и выступить в роли блокировки для управления подушкой безопасности.
  • Датчики приближения.
  • Датчики с эффектом Холла
  • Для определения скорости вращения колеса и, соответственно, помощи антиблокировочной тормозной системы (ABS).

Как эффект Холла можно использовать для определения типа используемого полупроводника

Коэффициент Холла говорит обо всем. Если коэффициент Холла отрицателен, это означает, что основными носителями заряда являются электроны. И поскольку число электронов больше по сравнению с отверстиями в полупроводниках n-типа, это ясно указывает на то, что испытываемый полупроводник n-типа. Аналогичным образом, если коэффициент Холла положительный, это означает, что основными носителями заряда являются дырки. И поскольку число отверстий больше по сравнению с электронами в полупроводниках p-типа, это ясно указывает на то, что испытываемый полупроводник p-типа.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Ссылка на основную публикацию
Чем засеять участок чтобы не росли сорняки
Бесконечная борьба с сорной растительностью на дачном участке и в огороде известна каждому. Сорняки отлично приживаются и растут в любых...
Цвет ламината серый дуб
Напольное покрытие — это самая важная часть интерьера помещения. Оно должно гармонировать с общим дизайном комнаты и дополнять его. Часто...
Цвет проводов в электропроводке автомобиля
Автомобильные провода Провода, применяемые на автомобилях для передачи электрической энергии от источников к потребителям, в процессе эксплуатации испытывают значительные тепловые...
Чем засыпать яму в гараже от воды
Смотровая яма должна быть в каждом гараже. Она позволяет проводить ремонтные работы, менять запчасти в машине. При обустройстве у автомобилистов...
Adblock detector