Что такое добротность резонансного контура

Что такое добротность резонансного контура

ДОБРОТНОСТЬ КОНТУРА – характеризует качество колебательного контура, обозначается Q. Численно равна отношению напряжения на любом из реактивных участков на резонансе к напряжению, подводимому к контуру, или отношению реактивного сопротивления к активному. При большой добротности контура напряжение на нем значительно превышает напряжение на входе контура. (С) http://vksn.narod.ru/slovar/24.html

Иными словами, можно сказать что чем больше добротность, тем медленнее будут затухать свободные колебания в контуре после ударного возбуждения

«Добротность обозначается символом Q (от английского quality factor) и является тем параметром колебательной системы, который определяет ширину резонанса и характеризует, во сколько раз запасы энергии в системе больше, чем потери энергии за время изменения фазы на 1 радиан.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания» — авторитетно учит нас Википедия.

Да уж. Напустили тумана ироды — без поллитры не разберёшься. А ведь придётся, раз впряглись.

Для начала возьмём ёжика. Хорошее животное! Хотя выдающимся умом не обладает, но думаю, что и оно в курсе, что "quality factor" — это показатель качества колебательного контура и в первую очередь, конструктивного качества катушки индуктивности.
Теперь возьмём женщину в теле — добротную женщину. Таких женщин рисовали художники 18-го, 19-го веков, а поэты писали: «Её выпуклости меня восхищают, её впуклости сводят с ума».

Так вот. К чему это я?
А к тому, что для получения в сухом остатке высокодобротного колебательного контура, придётся поискать в загашнике и высококачественный конденсатор с низким током утечки, и катушку индуктивности — крепкую, добротную и красивую, словно выпавшую из картины венецианского мастера в Пушкинском музее.

Приведём эквивалентную схему колебательного контура.

Здесь L и C — собственные индуктивность и ёмкость компонентов, входящих в состав колебательного контура,

rL — сопротивление катушки, эквивалентное потерям электрической энергии в проводе катушки индуктивности,

— сумма сопротивлений, обусловленных потерями в изоляции провода, каркасе, экране, сердечнике катушки индуктивности, а также потерями, вызванные наличием токов утечки в конденсаторе.

При подключении к контуру внешних цепей, параллельно Rш добавляется дополнительное сопротивление Rн, вносимое этими внешними цепями.

По большому счёту, на Рис.1 не хватает ещё одной ёмкости, равной сумме паразитных ёмкостей катушки индуктивности, внешних цепей и паразитной ёмкости монтажа. На высоких частотах эти привнесённые ёмкости могут иметь существенные величины, соизмеримые с ёмкостью самого контурного конденсатора. На добротность эти ёмкости существенного влияния не оказывают, но при расчёте резонансной частоты их необходимо учитывать и суммировать со значением основной ёмкости С.

Теперь давайте разберёмся, что такое "скорость затухания собственных колебаний в системе" и, каким боком она связана с добротностью.

Для начала мысленно спаяем схему, нарисованную на Рис.1, и замкнём переключатель на батарейку (в левое по схеме положение).

Конденсатор С зарядится до уровня, равного напряжению питания.

Теперь перещёлкнем переключатель в правое по схеме положение.

Благодаря энергии, запасённой в конденсаторе, в образовавшейся LC-цепи возникнут свободные колебания на частоте резонанса колебательного контура, равной fо= 1/2π√ LС .
Поскольку у нас ни с какой стороны не вечный двигатель — свободные колебания затухают, причём скорость затухания зависит от потерь в конденсаторе и катушке индуктивности: чем они меньше, тем медленнее затухание.
Число колебаний от момента возбуждения свободных колебаний до момента, когда их амплитуда уменьшится в е π = 23,14 раза, как раз и будет числено равняться добротности контура Q.

Число периодов свободных колебаний в контуре можно подсчитать счётчиком импульсов и таким образом узнать добротность колебательного контура, генератор сигналов в этом случае не нужен.

Собственно говоря, на таком принципе и строится большинство промышленных измерителей добротности.

Вспоминаем дальше: «Добротность является тем параметром колебательной системы, который определяет ширину резонанса».

Рисуем резонансную кривую (амплитудно частотную характеристику) колебательного контура.

По частотной характеристике условно определяется полоса пропускания контура Δf.
При этом сделано допущение, что напряжение внутри этой полосы имеет право снижаться до уровня 0,707 от максимального.
Исходя из этого, формула для определения добротности приобретает следующий вид: Q = f рез/Δf .
Рис.2

Из формулы естественным образом вытекает, что чем выше добротность — тем уже полоса пропускания резонансного контура, соответственно, чем ниже — тем шире.

А как измерить добротность контура, не прибегая к изготовлению специальных устройств, в домашней лаборатории?

1. Если речь идёт о низких (звуковых) частотах, то тут всё просто.
В этом случае, Q равна отношению реактивного сопротивления индуктивного или ёмкостного характера (характеристического сопротивления) к полному последовательному сопротивлению потерь в резонансном контуре. В виду того, что конденсаторы на данных частотах практически не вносят потерь, то добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки.
А поскольку данное сопротивление можно легко измерить обычным омметром, то имеет полный смысл проделать эту не сильно замысловатую манипуляцию, после чего перейти на страницу ссылка на страницу и в первой таблице произвести расчёт добротности. Естественным образом, подразумевается, что катушка намотана на соответствующем для данных частот сердечнике, не вносящих существенных потерь в работу колебательного контура.

Читайте также:  Какие события должны происходить при перегрузке лифта

2. На высоких частотах (радиочастотах) значение активного сопротивления катушки может составлять доли ома, к тому же возможно проявление влияния добротности конденсатора на общую добротность цепи, поэтому такими же примитивными методами, как в случае НЧ обойтись не удастся.
Рискну сделать осторожное предположение, что в радиолюбительской лаборатории у нас затерялся высокочастотный генератор с 50-омным выходом и такой же высокочастотный осциллограф, или, на худой конец, измеритель ВЧ напряжений.

В этом случае мы воспользуемся ещё одним определением Q. Добротность резонансного контура равна фактору увеличения напряжения и может быть выражена отношением напряжения, развиваемого на реактивных элементах к входному напряжению, поданному последовательно с контуром.

Спаяем пару резисторов.

Добротность измеряется при настройке генератора сигналов на частоту резонанса контура, соответствующую максимальному выходному напряжению.
Добротность Q рассчитывается как отношение выходного напряжения на резонансном контуре к напряжению, поданному на него.
В нашем случае Q = 250 x V2/V1 .
Рис.3

Так как в случае высокодобротных элементов, сопротивление контура на резонансной частоте может превышать значение в сотню килоом, для корректного измерения добротности, входные импедансы измерителя ВЧ напряжений, либо осциллографа должны превышать это значение как минимум на порядок.

Все наши рассуждения и формулы корректны для ненагруженных параллельных колебательных контуров, то есть для случаев, когда на выходе отсутствует реальная нагрузка.
В реальной схеме контур связан с источником колебаний и нагрузкой, которые вносят в него дополнительные потери, снижающие добротность.
Эквивалентная добротность Q параллельного колебательного контура с учётом этих потерь вычисляется по следующей формуле: Q = Q x Rш/(Rш+Rо) , где
Q — добротность ненагруженного контура,
Rш — шунтирующее сопротивление, равное R(источника) ll R(нагрузки),
Rо — эквивалентное сопротивление ненагруженного контура, равное сопротивлению контура на резонансной частоте, значение которого можно посчитать на той же странице ссылка на страницу во 2-ой таблице.

А на следующей странице порассуждаем на тему: что надо сделать, чтобы намотать катушку с максимально-возможной добротностью.

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный.

Основная радиоэлементная база колебательного контура: Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ωр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +XΣ 2 ), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина XΣ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.

Читайте также:  Стиральная машина zanussi smart 5 kg

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) WL = (LI 2 )/2 и конденсатором (энергия электрического поля) WC=(CU 2 )/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Читайте также:  Размер монитора 32 дюйма в сантиметрах

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепи I в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Видео по теме: Колебательный контур

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Ссылка на основную публикацию
Что появляется весной на деревьях
Татьяна Гребенюкова Прогулка «Первые листья на деревьях» Тема: «Первые листья на деревьях» Задачи: Формировать у детей умение целенаправленно осуществлять наблюдение,...
Чем покрыть крышу дома на даче
Выбор кровельного материала для дачи — довольно важный момент. При покупке основное внимание следует уделять техническим и эксплуатационным показателям, и...
Чем полезен настой из калины
Мы знаем про отвары все! Калина (латинское название Viburnum) – дерево семейства Адоксовые, произрастающее, в основном, в Северном полушарии. В...
Что приготовить из филе сома
Уха в домашних условиях 4.5 9 Перед вами - простой рецепт приготовления ухи простой в домашних условиях. Для приготовления ухи...
Adblock detector