Электродвигатель с фазным ротором схема подключения

Электродвигатель с фазным ротором схема подключения

Управление двигателем осуществляется с помощью командоконтроллера, который представляет собой аппарат дистанционного управления.

Контроллер замыкает и размыкает цепи управления электромагнитных катушек контакторов, контакты последних замыкают и размыкают цепи двигателя.

Рис. 5.1 Силовая схема управления трёхфазным асинхронным двигателем с фазным ротором

Нереверсивная схема управления при помощи командоконтроллера на n = 6 позиций (рис. 6.2) включает в себя контакты SA1-SA5, электромагнитные контакторы KM1-KM5, два встроенных тепловых реле защиты KK1 и KK2, а так же автоматический выключатель QF.

Схема обеспечивает пуск асинхронного двигателя (M), отключение его от сети в ручном и автоматическом режиме (SQ1), а также защиту от коротких замыканий (QF) и длительных перегрузок (KK1 и KK2).

Рис. 6.2 Нереверсивная схема управления на n = 6 позиций при помощи командоконтроллера

В первом положении командоконтроллера замыкается контакт SA, подавая питание на катушку. Контактор KM подключает обмотки статора двигателя. Одновременно с включением приводного двигателя включается обмотка электромагнита YB и тяговым усилием на его якоре раздвигаются стойки, освобождая от колодок шкив. В цепь ротора электродвигателя при этом включено полное сопротивление Rg пускового реостата, и двигатель разгоняется по характеристике 1 (см. рис. 6) до установившейся частоты вращения nуст при заданном моменте сопротивления M2.

Во втором положении замыкается контакт SA1 командоконтроллера и включается контактор KM1, который закорачивает часть R1 сопротивления реостата. Двигатель переходит на работу по характеристике 2, разгоняется до частоты вращения nуст2.

Таким образом, при переключении командоконтроллера последовательно замыкаются контакты SA -SA5, включающие соответственно контакторы KМ -KM5, которые закорачивают часть сопротивления реостата от R1 до R5, урезая его до нуля. В итоге двигатель работает на естественной характеристике 5 с частотой вращения nуст5

Для выключения двигателя необходимо контроллер перевести в положение 0.

6. ВЫБОР ОСНОВНОГО ОБОРУДОВАНИЯ СХЕМЫ УПРАВЛЕНИЯ

Выбор оборудования схемы управления осуществим по техническим характеристикам электрооборудования согласно приложению 3 [2].

Для управления коммутацией в схеме управления подбираем кулачковый контроллер по основным характеристикам.

резисторы. Рис. 6.14.

Схема управления пуском и динамическим торможением асинхронного двигателя

Постоянный ток протекает по всем обмоткам статора или по части их, создает постоянное во времени магнитное поле. В обмотках вращающегося по инерции ротора будет наводиться ЭДС и потечет ток, который создаст свое неподвижное в пространстве магнитное поле. Взаимодействие тока ротора с результирующим магнитным полем АД приведет к появлению тормозного момента и остановке ротора.

Преобразуемая при этом механическая энергия движущихся частей в электрическую рассеивается в виде тепла.

Пуск двигателя осуществляется нажатием кнопки SB1 (см. рис. 6.14).

После чего срабатывает линейный контактор КМ, подключающий обмотки статора к трехфазному источнику питания. Замыкающий блок-контакт КМ в цепи реле времени КТ вызовет его срабатывание. В результате чего контакты этого реле замкнутся в цепи контактора торможения КМ1, но этот контактор не сработает, так как перед этим произойдет размыкание блок-контакта КМ.

Нажатием кнопки SB3 производится остановка АД. Катушка линейного контактора теряет питание и контакты КМ в цепи обмоток статора размыкаются, отключая двигатель от сети переменного тока.

Одновременно с этим замыкается размыкающий блок-контакт КМ в цепи катушки контактора торможения КМ1; последний включается и подает в обмотки статора постоянный ток от выпрямителя V через резистор R T и замыкающий блок контакт КМ1. АД переходит в режим динамического торможения.

С потерей питания катушки КМ, также размыкается замыкающий блок-контакт КМ в цепи реле времени КТ. Это реле, потеряв питание, начинает отсчет выдержки времени. Через промежуток времени, соответствующий останову двигателя, реле КТ размыкает свои контакты в цепи катушки контактора КМ1.

Обмотка статора отключается от источника постоянного тока и схема переходит в свое первоначальное состояние.

Задержкой срабатывания реле КТ и величиной регулируемого резистора R т устанавливают время динамического торможения.

Схема управления реверсивным асинхронным двигателем с фазным ротором. Частоту вращения ротора асинхронного электродвигателя с фазным ротором можно регулировать, изменяя величину сопротивления в роторной цепи (см. подразд. 5.2).

Управлять такими электродвигателями возможно с помощью силовых и магнитных контроллеров (рис. 6.15). В настоящее время в подъемнотранспортных механизмах используются магнитные контроллеры, относящиеся к аппаратам дистанционного управления.

Рис. 6. 15. Схема управления трехфазным асинхронным двигателем с фазным

ротором: а) силовая схема; б) схема управления

В первом положении командоконтроллера “Вперед” замыкается контакт S1.1, подавая питание на катушку. Контактор КМ1 подключает обмотки статора двигателя и тормозной электромагнит YB1 к сети. В цепь ротора электродвигателя при этом включено полное сопротивление пускорегулирующего реостата, и двигатель разгоняется по характеристике I (см. рис. 5.4) до установившейся частоты вращения n при заданном моменте сопротивления М с .

Во втором положении замыкается контакт S1.3 командоконтроллера и включается контактор КМ3, который закорачивает часть сопротивлений

реостата. Двигатель переходит на работу по характеристике II, разгоняется до частоты вращения n уст.II .

В третьем положении контроллера включается контактор КМ4, который закорачивает выводы обмотки ротора, и двигатель работает на естественной характеристике III с частотой вращения n уст.III .

Для выключения двигателя необходимо контроллер перевести в нулевое положение. Вращение “Назад” осуществляется постановкой рукоятки магнитного контроллера на позицию 1 “Назад”, при этом включается контактор КМ2. Происходит смена чередования фаз в обмотках статора и начинается обратное вращение ротора при полном включенном пускорегулирующем резисторе роторной цепи. Дальнейший процесс управления аналогичен описанному выше.

Особенностью работы двигателей подъемно-грузовых лебедок является спуск груза. В этом случае груз не только преодолевает силы трения, но и стремится ускорить вращение двигателя в направлении спуска. Скорость двигателя очень быстро достигает синхронной, после чего двигатель начинает работать как генератор под действием силы тяжести груза, т.е., тормозя механизм. Если сопротивление в цепи ротора двигателя полностью закороченно, то скорость опускания груза на 5–10 % больше синхронной частоты вращения. Увеличение роторного сопротивления приводит к увеличению скорости спуска (а не к уменьшению, как это бывает при подъеме).

Схема автоматического пуска и торможения противовключением асинхронного двигателя с фазным ротором. Пуск двигателя совершается нажатием кнопки SB1 (вперед) или SB2 (назад), тем самым подается питание на катушку контактора КМ1 (или КМ2). Рассмотрим работу схемы при срабатывании контактора КМ1 (рис. 6.16).

Обмотки статора подключаются к сети, включается блокировочное реле РБ. Катушка РП не притягивает свой якорь из-за малой ЭДС ротора и размыкающий контакт РП замкнут. Затем замыкающим контактом РБ собирается цепь катушки контактора КП, шунтирующего своими контактами ступень сопротивлений R n в цепи ротора.

Читайте также:  Малина два урожая в год

Рис. 6.16.

Схема торможения противовключением асинхронного двигателя с фазным ротором: а) силовая схема; б) схема управления

С помощью механического маятникового реле времени РВ, пристраиваемого к контактору КП, осуществляется выдержка времени, необходимая для некоторого разгона двигателя, после чего включается контактор КУ, шунтирующий сопротивления R g в цепи ротора, и двигатель выводится на естественную характеристику.

Таким образом, пуск двигателя совершается в одну ступень с резистором в роторе R g . Ступень резистора R n служит для ограничения тока при торможении.

Если требуется реверсирование двигателя, то необходимо нажать на кнопку противоположного направления вращения (в нашем примере на кнопку SB2), не воздействуя на кнопку SB3 (стоп). При этом отключаются контакторы КМ1 и КП. Последний – из-за размыкания контакторов КМ1 и РБ. Как только замкнется размыкающий контакт КМ1 в цепи катушки контактора КМ2, он включится, и двигатель переведется в режим торможения противовключением.

В приведенной на рис. 6.16 схеме реализуется управление торможением в функции угловой скорости (по величине ЭДС ротора, которая пропорциональна скольжению). Реле напряжения РП через выпрямитель V подключается к выводам обмотки ротора. Реле настраивается с помощью резистора R р так, что при начале торможения, когда направления вращений магнитного поля статора и ротора противоположны (S=2), оно срабатывает, а при угловой скорости, близкой к нулю (S=1), когда напряжение на его катушке снижается почти вдвое, реле отпускает свой якорь. При пуске в обратную сторону реле РП не срабатывает, так как ЭДС ротора становится еще меньше, достигая нулевого значения при S=0.

После включения контактора КМ2, когда произойдет реверсирование магнитного поля статора, срабатывает реле РП и своим размыкающим

контактором разорвет цепь катушки контактора КП, что обеспечит на период торможения введение всех резисторов в цепь ротора (R g и R n ). Блокировочное реле РБ служит для создания временного разрыва в цепи катушки контактора КП, оно отключается одновременно с контактором КМ1, а включается только после замыкания контактов контактора КМ2. Когда контакты РБ сомкнутся, уже успеет сработать реле РП.

По окончании процесса торможения контакт РП закроется и контактор КП зашунтирует ступень сопротивления R n . Затем произойдёт изменение направления вращения ротора, то есть пуск в противоположном направлении (назад).

Если остановку двигателя производить кнопкой SB3, то обмотки статора отключатся от сети, но электрического торможения не произойдет, двигатель остановится под действием статического момента сопротивления на валу.

Схема пуска асинхронного двигателя с фазным ротором в функции времени. Упрощенная принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени [8] представлена на рис. 6.17. Пуск двигателя по этой схеме осуществляется в две пусковые ступени, при этом для большей надежности цепи управления подключены к сети постоянного тока.

Рис. 6.17. Упрощенная

принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени: а) силовая схема; б) схема управления

При подключении цепей управления к источнику напряжения сразу включаются реле РУ1 и РУ2 через размыкающие блок-контакты КМ и КУ1. Реле без выдержки времени отключают катушки контакторов КУ1 и КУ2 от источника питания. Затем после нажатия кнопки SB1 и включения контактора КМ статор двигателя подключается к сети, а роторная цепь его замкнута на полностью включенные резисторы R1 и R2, так как силовые контакты контакторов КУ1 и КУ2 разомкнуты; начинается пуск АД.

Размыкающий контакт КМ в цепи катушки реле времени РУ размыкается, оно обесточивается, начинает отсчитывать выдержку времени при пуске на первой пусковой ступени. После выдержки времени реле РУ1 своим контактом замыкает цепь питания катушки контактора КУ1. Этот контактор зашунтирует пусковой резистор R1 своими силовыми контактами и снимает питание с реле времени РУ2 вспомогательным контактом КУ1. Реле РУ2 начинает отсчитывать выдержку времени, по окончании которой размыкающий контакт РУ2 замыкается, подключая к источнику питания катушку КУ2, в результате чего зашунтируется вторая ступень пускового сопротивления R2 и АД будет выведен на естественную характеристику.

Схема пуска асинхронного двигателя с фазным ротором в функции тока. Схема, приведенная на рис. 6.18, обеспечивает пуск асинхронного двигателя с фазным ротором в одну ступень в функции тока и динамическое торможение в функции скорости и включает оборудование:

• электромагнитные контакторы КМ1, КМ2, КМ3;

• реле контроля скорости SR;

• реле напряжения KV;

• понижающий трансформатор Т;

• предохранители FA1, FA2;

• тепловые реле КК1, КК2.

Реле контроля скорости SR размыкает свои контакты в цепи катушки электромагнитного тормоза КМ3, когда частота вращения уменьшается до значения, близкого к нулю, а замыкает, когда начнется разгон АД.

После включения автоматического выключателя нажимается кнопка пуска SB1. По известной схеме включается контактор КМ1, через силовые контакты которого статор АД подключается к сети. Бросок тока в цепи ротора, когда еще не замкнуты контакты КМ2, вызовет включение реле тока КА, последнее разорвет свои контакты в цепи катушки КM2. Таким образом, разбег начинается с пусковым сопротивлением R 2g в цепи ротора.

Рис. 6.18. Схема пуска АД в

одну ступень в функции тока и динамического торможения в функции скорости

Вспомогательные контакты КМ1 замыкают цепь катушки промежуточного реле напряжения KV, шунтируют кнопку SB1, размыкают цепь контактора торможения КМ3. Несмотря на то, что реле KV включается, это не приводит к включению контактора КМ2, так как до этого в цепи разомкнулся контакт реле КА.

Трогание с места и вращение ротора вызывает замыкание контакта реле скорости SR в цепи тормозного контактора КМ3, но и этот контактор не сработает, так как до этого разомкнулся контакт КМ1. По мере разгона двигателя ток в цепи ротора уменьшается, и реле тока КА выключается, замыкая цепь контактора КМ2. Этот контактор зашунтирует резисторы R 2g в цепи ротора, АД выйдет на естественную характеристику.

Для перевода в тормозной режим нажимается кнопка SB3. Контактор КМ1 теряет питание и отключается статор АД от сети, но включается тормозной контактор КМ3. Контактор КМ3 замыкает цепь питания катушек обмотки статора постоянным током от выпрямителя VD, подключенного к трансформатору Т. Тем самым осуществляется перевод АД в режим динамического торможения.

Одновременно с этим потеряет питание аппарат KV, а следовательно и КМ2, что приведет к вводу в цепь ротора резистора R 2g . Двигатель начинает тормозить.

Читайте также:  Как узнать транзистор без маркировки

При скорости двигателя, близкой к нулю, реле контроля скорости SR размыкает свой контакт в цепи катушки контактора КМ3. Он отключается и прекращает торможение АД. Схема приходит в исходное положение и готова к последующей работе.

Принцип действия схемы не изменяется, если катушка реле тока включается в фазу статора, а не ротора при одноступенчатом разгоне двигателя.

Схема панели управления асинхронным двигателем типа ПДУ 6220.

Панель типа ПДУ 6220 входит в состав нормализованной серии панелей управления АД с фазным и короткозамкнутым роторами и обеспечивает пуск в две ступени и динамическое торможение в функции времени (рис. 6.19).

Рис. 6.19. Схема панели

управления асинхронного двигателя типа ПДУ 6220

При подаче на схему напряжений постоянного тока 220 В и переменного 380 В тока (замыкание рубильников Q1, Q2 и автомата QF) происходит включение реле времени КТ1, чем двигатель подготавливается к пуску с полным пусковым резистором в цепи ротора.

Одновременно с этим, если рукоятка командоконтроллера находится в нулевой (средней) позиции и максимально-токовые реле FA1–FA3 не включены, включается реле защиты KV от понижения питающего напряжения и готовит схему к работе замыканием своего блок-контактора KV.

Пуск двигателя осуществляется по любой из двух искусственных характеристик или по естественной характеристике, для чего рукоятка SA должна устанавливаться соответственно в положение 1,2 или 3. При переводе рукоятки в любое из указанных положений SA включается линейный контактор КМ2, подключающий АД к сети, контактор управления тормозом КМ5, подключающий к сети катушку YA электромагнитного тормоза,

который при этом растормаживает двигатель, и реле времени KT3, управляющее процессором динамического торможения.

Перевод контроллера SA в положение 2 или 3 позволяет включить контакторы ускорения КМ3 и КМ4, скорость двигателя увеличивается.

Торможение АД происходит за счет перевода рукоятки SA в нулевое положение. Тогда отключаются контакторы КМ2 и КМ5, а включается контактор динамического торможения КМ1, который подключает АД к источнику постоянного тока. В результате этого будет идти интенсивный процесс комбинированного (механического и динамического) торможения АД, который закончится после отсчета реле своей выдержки времени, соответствующей времени торможения.

Схема управления тиристорным приводом переменного тока . Схема управления тиристорным приводом переменного трехфазного тока содержит тиристорный преобразователь, который включается в цепь статорных обмоток двигателя и осуществляет фазовое регулирование подводимого к двигателю напряжения (рис. 6.20).

Последовательно со статорными обмотками двигателя встречнопараллельно через быстродействующие предохранители FU включены три пары тиристоров преобразователя U. Регулированием угла открывания тиристоров с помощью системы управления СУ изменяется напряжение, подводимое к двигателю, а следовательно, и его момент.

Рис. 6.20. Схема управления асинхронного двигателя с тиристорным

преобразователем: QF – автоматический выключатель; В – датчик тока; U – тиристорный преобразователь; FU – предохранитель; KK – командоконтроллер; СУ-

система управления тиристорным преобразователем; BR – тахогенератор; КМ – электромагнитные контакторы

В результате получается ряд мягких механических характеристик, обеспечивающих плавный пуск и разгон механизма. При использовании обратной связи по частоте вращения, осуществляемой с помощью тахогенератора BR, жесткость механических характеристик увеличивается, что позволяет получить устойчивые промежуточные и низкую посадочную скорости.

Схемой предусмотрен контактный реверс двигателя контакторами КМ2 и КМ3. Переключение контакторов происходит при отсутствии тока в главной цепи под контролем датчика тока В. Бестоковая коммутация значительно повышает износостойкость аппаратуры.

С помощью тиристоров преобразователя может быть получено и регулируемое динамическое торможение, а также торможение противовключением. Управление углом открывания тиристоров может осуществляться ступенчато командоконтроллером КК, или плавно другим аппаратом, например, сельсином.

6.5. Крановые защитные панели

Крановые защитные панели применяют при контроллерном управлении двигателями крана. Конструкция защитной панели представляет собой металлический шкаф с установленной в нем аппаратурой. Шкаф закрыт дверью с замком. Второй замок заблокирован с главным рубильником, то есть дверь панели не откроется, пока не будет выключен рубильник, обесточивающий электрооборудование. Размещаются защитные панели обычно в кабине крана. На защитной панели установлена электроаппаратура, осуществляющая следующую защиту:

• максимальную от токов короткого замыкания и значительных (свыше 250 %) перегрузок крановых электродвигателей;

• нулевую, исключающую самозапуск двигателей после перерыва в электроснабжении;

• концевую, обеспечивающую автоматическое отключение электроприводов при переходе механизмами крана предельно допустимых положений.

Панели допускают подключение от трех до шести двигателей (рис. 6.21). В зависимости от числа защищаемых двигателей и соотношения их мощностей панели комплектуются соответствующим количеством блок-реле максимального тока, которые при срабатывании воздействуют на один, общий для группы из двух-четырех реле, контакт. Этим уменьшается число

Автоматизация процессов в современном обществе повсеместно заменяет труд человека, как в простейших повседневных делах, так и в сложных производственных процессах. Для привода различных грузоподъемных механизмов применяются электродвигатели, которые полностью исключают физический труд по перемещению. В отличии от классических электрических машин крановые электродвигатели обладают рядом отличительных особенностей.

Особенности и назначение

Под крановыми электродвигателями следует понимать такие электроприводные агрегаты, которые осуществляют перемещение различных механизмов крановых установок. При рассмотрении грузоподъемных кранов, как компонентного механизма, состоящего из различных составных элементов, назначение крановых электрических машин имеет несколько направлений:

  • Перемещение самой крановой установки по рельсам;
  • Перемещение крановых установок в вертикальной плоскости;
  • Поворот крановых элементов;
  • Движение грузоподъемных механизмов для перемещения крюка.

Все манипуляции с грузом выполняются за краткосрочный период, поэтому работа кранового электродвигателя должна производиться в повторно-кратковременных режимах, при этом существенно изменяется диапазон частоты вращения. Из-за этого продолжительных усилий им совершать не приходится, но агрегат претерпевает кратковременные нагрузки и воздействия пусковых токов. Помимо стандартных ситуаций обмотки могут подвергаться перегрузкам и перегреву, поэтому приводы механизмов изготавливаются со следующими особенностями:

  • В большинстве случаев это электрические машины закрытого типа, наружный кожух позволяет защищать их от механических воздействий в процессе эксплуатации. Для металлургических агрегатов могут делаться исключения, так как из-за повышенной температуры возникает необходимость вентиляции обмоток.
  • Общепромышленные электродвигатели имеют улучшенную изоляцию по параметрам устойчивости к высоким температурам, как правило, классов F и H. Что позволяет сохранять уровень сопротивления изоляции при ее нагревании.
  • Относительно небольшая инерционность вала, что обеспечивает снижение потерь электрической энергии во время переходных процессов на рабочих частотах.
  • Магнитная система обладает хорошей проводимостью, что создает мощный поток, способный преодолевать серьезные нагрузочные усилия.
  • Допускается высокий уровень перегрузки относительно номинального значения рабочих токов. Коэффициент может достигать от 2 до 5, что считается нормальным режимом для кранового электродвигателя.
  • Большой разброс частот вращения между минимальным и максимальным режимами.
Читайте также:  Пила дисковая аккумуляторная dewalt dcs576n

Некоторые требования для крановых электродвигателей могут упраздняться в виду особенностей рабочих режимов и техпроцессов. А некоторые виды специализации будут продиктованы типом и конструкцией мотора.

Разновидности крановых электродвигателей

В виду использования различных принципов для вращения ротора в электродвигателе, многие из них нашли широкое применение в эксплуатации крановых установок. Среди электродвигателей общепромышленного назначения выделяют машины переменного и постоянного тока, асинхронные двигатели, как с фазными, так и с короткозамкнутым ротором. Далее рассмотрим каждый из типов, применяемых для кранового оборудования.

Переменного тока

Для отечественных кранов используются асинхронные электрические машины переменного тока. Отличительной особенностью таких установок являются хорошие тяговые характеристики, а вот к недостаткам относится необходимость подключения сразу трех фаз и большие пусковые токи. Большинство моделей изготавливаются на стандартную частоту сети в 50Гц, такие варианты способны постоянно переносить перегрузки в 10 – 15%.

Рис. 1. Пример электродвигателя переменного тока

Наиболее распространенными моделями в сети переменного тока являются электродвигатели MTF и MTKF, которые имеют фазный и короткозамкнутый ротор соответственно. А в металлургическом производстве модельный ряд составляют электрические машины MTH и MTKH с теми же конструктивными особенностями. На практике для питания и одних, и других может применяться переменное напряжение с частотой в 50 и 60Гц. Возможность вращения ротора для них колеблется в пределах от 600 до 1000 об/мин для питающей электрической величины частотой 50Гц. Или от 700 до 1200 на частотах 60Гц. Электроприводы механизмов в большинстве случаев может иметь сразу несколько скоростей.

Постоянного тока

Электродвигателями постоянного тока комплектуются такие крановые установки, которым требуется производить частые включения в течении часа или всей рабочей смены. Помимо этого они позволяют регулировать частотный диапазон в достаточно широком диапазоне. Разумеется, что в наше время трехфазные асинхронные машины могут приближаться к моторам постоянного тока за счет внедрения систем частотного преобразования. Регулирование выполняется за счет либо ослабления магнитного поля статора или повышения напряжения обмоток ротора.

Рис. 2. Пример двигателя постоянного тока

Конструктивно выпускаются на мощность от 2 до 190кВт, в зависимости от величины питающего напряжения группы обмоток возбуждения могут иметь последовательное или параллельное соединение. В данном типе крановых электродвигателях управление производится за счет изменения токов в обмотке возбуждения.

Краново-металлургические асинхронные электродвигатели серии 4МТ

Металлургическая промышленность характеризуется значительными объемами перемещаемых материалов и удельным весом металла. Поэтому крановые электродвигатели серии МТ должны обеспечивать заявленную мощность, несмотря на частоту вращения. Ярмо электрической машины изготавливается с четырьмя или восьмью полюсами для передачи магнитного потока, материалом для магнитопровода служит холоднокатаная сталь. Для изоляции крановых электродвигателей в качестве диэлектрика применяются полимерные пленки, пропитанные ткани или бумага.

Рис. 3. Краново-металлургические электродвигатели

В электроприводах металлургических кранов на этапе изготовления закладывается большая надежность – до 0,98, в то время, как все остальные могут иметь коэффициент 0,96. Срок эксплуатации, заявленный изготовителем также должен быть не ниже 20 лет.

С фазным ротором

Крановые электродвигатели с фазным ротором отличаются наличием отдельной обмотки на вращающейся части. Электроснабжение роторной катушки осуществляется за счет коллекторного узла, который производит токосъем и отбор мощности через скользящий контакт. Однако щеточный механизм в них — это наиболее изнашиваемым элемент, после истирания графитовых контактов они подлежат замене.

Рис. 4. Конструкция электродвигателя с фазным ротором

Данный тип трехфазных асинхронных электрических машин отличается плавным пуском и большой нагрузочной способностью. За счет чего их устанавливают на краны среднего и тяжелого типа, перемещающие тяжеловесные грузы. Позволяют регулировать усилие момента на валу в трех и четырехшаговом режиме, пропорционально повышая мощность воздействия.

С короткозамкнутым ротором

Конструктивно вращающаяся часть представляет собой стальную конструкцию литого или наборного типа. В отличии от предыдущего варианта крановые электродвигатели с короткозамкнутым ротором отличаются меньшей массой и меньшей себестоимостью. Однако главным недостатком является малый момент, создаваемый на валу, а это, в свою очередь, приводит к дефициту усилия. Поэтому моторы с короткозамкнутым ротором устанавливаются на маломощные крановые установки, предназначенные для перемещения грузов небольшой массы с малой скоростью.

Рис. 5. Электродвигатель с короткозамкнутым ротором

Технические характеристики

Как и любые электроустановки, электрические машины выпускаются в соответствии с требованиями и условиями, в которых их будут эксплуатировать. При выборе конкретной модели кранового электродвигателя руководствуются его параметрами. К основным характеристикам относятся:

  • Потребляемая мощность – характеризует объем расходуемой электрической энергии, необходимой для работы электродвигателя. Может выражаться в киловаттах или кило вольт-амперах.
  • КПД – показывает соотношение полезной работы, совершенной электрической машиной по отношению к потребленной из сети электроэнергии. В крановых установках этот параметр может варьироваться от 60 до 90%.
  • Частота вращения – показывает количество оборотов вала, которые тот может совершать за единицу времени. Как правило, используется величина из расчета на одну минуту. Для каждой модели обороты могут изменяться, поэтому параметр будет иметь диапазонное значение.
  • Мощность на валу – определяет усилие, создаваемое крановым электродвигателем непосредственно на рабочем органе.
  • Номинальное рабочее напряжение – обозначает разность потенциалов, которая должна подаваться на ввод электрической машины для приведения ее в движение.
  • Масса и габаритные размеры – физические параметры, необходимые для установки в общую конструкцию крана.
  • Степень пыле- влагозащищенности — обозначается латинскими буквами IP и двумя цифрами, указывающими на возможность проникновения частиц внутрь корпуса.

Производители

Отечественный рынок крановых электродвигателей представляет довольно большой спектр предприятий, функционирующих на постсоветском пространстве, которые специализируются на выпуске электрических машин для сетей 220/380В с частотой 50Гц и прочих установок.

Среди наиболее известных следует выделить:

  • Завод крупных электрических машин – специализируется на производстве приводов различной конструкции и принципа действия, выпускает около 100 типов моторов.
  • Сибэлектролмотор – выпускает электродвигатели серии крановых машин асинхронного принципа.
  • Сафоновский электромашиностроительный завод – производит различные электрические машины для любых сфер и отраслей.
  • ЭЛМА – занимается не только производством, но и технической поддержкой в обслуживании электродвигателей.
  • Мегаватт – охватывает большой спектр промышленного оборудования, включая электродвигатели МТФ и МТХ, а также МТКХ и МТКФ.
Ссылка на основную публикацию
Электрическая схема ваз 2107 карбюратор с описанием
Принципиальные схемы электрооборудования на ВАЗ 2107 1982+ г.в., для всех автовладельцев. Некогда «шестерка»- считалась престижнее, чем ВАЗ-2103, так и ВАЗ-2107...
Что появляется весной на деревьях
Татьяна Гребенюкова Прогулка «Первые листья на деревьях» Тема: «Первые листья на деревьях» Задачи: Формировать у детей умение целенаправленно осуществлять наблюдение,...
Что приготовить из филе сома
Уха в домашних условиях 4.5 9 Перед вами - простой рецепт приготовления ухи простой в домашних условиях. Для приготовления ухи...
Электрическая цепная пила champion 324n 18
Содержание Мощная, надежная в использовании, неприхотливая, полупрофессиональная электропила Чемпион 324n 18 позволяет выполнять большинство хозяйственных работ. Она станет надежным помощником...
Adblock detector